Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(8)2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1785751

ABSTRACT

Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease.


Subject(s)
COVID-19 , COVID-19/complications , Carbon/metabolism , Folic Acid/metabolism , Homocysteine , Humans , Methionine/metabolism , SARS-CoV-2 , Vitamin B 12/metabolism , Post-Acute COVID-19 Syndrome
2.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390657

ABSTRACT

COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.


Subject(s)
Biomarkers/blood , Carbon/metabolism , Liver/metabolism , Metabolome , Nitrogen/metabolism , Amino Acids/metabolism , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Discriminant Analysis , Humans , Least-Squares Analysis , Metabolic Networks and Pathways/genetics , Metabolomics/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index
3.
Nat Commun ; 12(1): 1676, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1135664

ABSTRACT

The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


Subject(s)
COVID-19/metabolism , Carbon/metabolism , Folic Acid/metabolism , SARS-CoV-2/physiology , Virus Replication , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Folic Acid Antagonists/pharmacology , Glucose/metabolism , Humans , Methotrexate/pharmacology , RNA, Viral/biosynthesis , SARS-CoV-2/drug effects , Serine/metabolism , Transcription, Genetic , Vero Cells , Viral Proteins/genetics , Virus Replication/drug effects
4.
FEBS J ; 288(12): 3715-3726, 2021 06.
Article in English | MEDLINE | ID: covidwho-923390

ABSTRACT

In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.


Subject(s)
Antiviral Agents/metabolism , Carbon/metabolism , Interferons/metabolism , Proteins/metabolism , S-Adenosylmethionine/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , HEK293 Cells , Humans , Immunity, Innate/drug effects , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Models, Biological , Oxidoreductases Acting on CH-CH Group Donors , Proteins/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL